
SNUG 2016 1 

Molding Functional Coverage and  

Reporting for Highly Configurable IP 

Jeremy Ridgeway 

Broadcom Limited, Corp. 

 

September 29, 2016 

SNUG Austin 



SNUG 2016 2 

Agenda 

Background and Problem 

Our Approach 

 Coverpoints are not in a vacuum 

 Mode-of-operation 

 DUT Configuration 

ñThe Demoò or ñWhat this looks like without actually running a demoò 

 



SNUG 2016 3 

Some Serial Controller IP 

ÅData path is 32 bits 

 

ÅSingle lane transmit/receive 

 

ÅGeneration 1 speed 

 

 

IP 

32 

Using PCI-Express as the Example 



SNUG 2016 4 

Packet Data 

ÅStart of packet delimiter 

ÅHeader 

ÅData 

ÅCRC 

ÅEnd of packet delimiter HDR 

DATA 

CRC 

Framing 

PHY 

32 

S E 
8 

Serial Transmit Data 

 IP 

1 1 0 



SNUG 2016 5 

Packet Data 

ÅMonitor delimiters 

 

ÅStart of packet depends on origin 

ï STP = start transport packet (8ôhFB) 

ï SDP = start data link packet (8ôh5C) 

ÅEnd of packet depends on data 

ï END = good packet (8ôhFD) 

ï EDB = bad/nullified packet (8ôhFE) 

HDR 

DATA 

Framing 

PHY 

32 

S E 
8 

 IP 

1 1 0 

MONITOR 

CRC 

Serial Transmit Data 



SNUG 2016 6 

Monitor 

ÅNo correlation 

ï data == 8ôhFE when ctrl == 0 

 

ï False positive for EDB coverage 

ÅOver-correlated 

ï data == 8ôhFE && ctrl == 1 

ï EDB covered! 

 

ï data == 8ôh00 && ctrl == 1 

ï False negative for invalid control character 

class MonitorA; 

    logic [7:0] data; // 8-bit data path 

    logic ctrl;   // 1-bit control path 

    covergroup tx_dp_cg; 

        coverpoint data; 

        coverpoint ctrl; 

    endgroup 

endclass 

class MonitorB; 

    logic [7:0] data; // 8-bit data path 

    logic ctrl;   // 1-bit control path 

    covergroup tx_dp_cg; 

        coverpoint data; 

        coverpoint ctrl; 

        cross data, ctrl; // correlation! 

    endgroup 

endclass 

Obviously, not the way to do functional coverage 



SNUG 2016 7 

Monitor 

class MonitorGL; 

    logic [7:0] data; // 8-bit data path 

    logic ctrl;   // 1-bit control path 

    covergroup tx_dp_cg; 

        coverpoint data {  

            bins data_0[ ] = { 

                8ôhFB, 8ôh5C, 8ôhFD, 8ôhFE };  

        } 

        coverpoint ctrl { 

            bins ctrl_0 = { 1ôb1 };  

        } 

        c_0: cross data, ctrl {  

            delim_cross =  

                binsof(data.data_0) &&  

                binsof(ctrl_0);  

        } 

    endgroup 

endclass 

ÅProperly correlated covergroup 

ÅWhen cross c_0 is covered, the 

whole group is covered 

Only care about delimiter encodings 

Only when characters are marked as control 

Sample only packet delimiter control characters 

GoldiLocks 



SNUG 2016 8 

Some PCIe Controller IP 

ÅData path is 32 bits 

 

ÅSingle lane transmit/receive 

 

ÅGeneration 1 speed 

 

 

ÅLow power support 

ï L0s 

ï L1 

ï L1 Sub-states 

 

IP 

32 64 

64 

2 

3 

Two 

Four 

L0s 

3 1/2 

L1 
L1 

ss 

= $$ for company 

= Job for me 



SNUG 2016 9 

PCIe Controller IP 

ÅData path is 32 bits 

 

ÅTwo lane transmit/receive 

 

ÅGeneration 3 speed 

 

ÅLow power support 

ï L0s 

ï L1 

 

Gen3, 2-Lane, Low Power L0s and L1 support 

IP 

32 

3 1/2 

L0s L1 

L1 sub-states coverage 

not needed 

x4 lane coverage 

not needed 



SNUG 2016 10 

General PCIe Controller IP 

ÅData path is X bits 

ï Fixed value 

ÅY number of lanes transmit/receive 

ï Supported at compile-time  

ï Enabled at runtime 

ÅGeneration Z speed 

ï Supported at compile-time 

ï Enabled at runtime  

ÅLow power options include/exclude 

ï Supported at compile-time 

ï Enabled at runtime 

 

IP 

X 

Y 

Speeds 

Low power 
Config 

Config 

Config 

Mode 

Mode 

Mode 

Config 



SNUG 2016 11 

Monitor 

class MonitorGL; 

    logic [7:0] data; // 8-bit data path 

    logic ctrl;   // 1-bit control path 

    covergroup tx_dp_cg; 

        coverpoint data {  

            bins data_0[ ] = { 

                8ôhFB, 8ôh5C, 8ôhFD, 8ôhFE };  

        } 

        coverpoint ctrl { 

            bins ctrl_0 = { 1ôb1 };  

        } 

        c_0: cross data, ctrl {  

            delim_cross =  

                binsof(data.data_0) &&  

                binsof(ctrl_0);  

        } 

    endgroup 

endclass 

ÅAre all delimiters covered when: 

ï GEN1, GEN2, GEN3 speed? 

ï x1 support: x1 enabled? 

ï x2 support: x1 enabled, x2 enabled? 

ï x4 support: x1, x2, x4 enabled? 

ï Lanes reversed? 

ï Lane polarity reversed? 

ï After transition out of L0s? 

ï After transition out of L1? 

ï After transition out of an L1 sub-state? 

 



SNUG 2016 12 

Monitor 

class MonitorGL; 

    logic [7:0] data; // 8-bit data path 

    logic ctrl;   // 1-bit control path 

    covergroup tx_dp_cg; 

        coverpoint data {  

            bins data_0[ ] = { 

                8ôhFB, 8ôh5C, 8ôhFD, 8ôhFE };  

        } 

        coverpoint ctrl { 

            bins ctrl_0 = { 1ôb1 };  

        } 

        c_0: cross data, ctrl {  

            delim_cross =  

                binsof(data.data_0) &&  

                binsof(ctrl_0);  

        } 

    endgroup 

endclass 

ÅAre all delimiters covered when: 

ï GEN1, GEN2, GEN3 speed? 

ï x1 support: x1 enabled? 

ï x2 support: x1 enabled, x2 enabled? 

ï x4 support: x1, x2, x4 enabled? 

ï Lanes reversed? 

ï Lane polarity reversed? 

ï After transition out of L0s? 

ï After transition out of L1? 

ï After transition out of an L1 sub-state? Customer 1:  

I see an error when é ! 

Customer 2:  

Did you even test this mode? 

The coverage scenario questions are applicable to ALL covergroups 

Provide 

cross  

context 

via mode 

of 

operation 

Shape 

group 

based 

on 

config 



SNUG 2016 13 

Agenda 

Background 

Our Approach 

 Coverpoints are not in a vacuum 

 Mode-of-operation 

 DUT Configuration 

ñThe Demoò or ñWhat this looks like without actually running a demoò 



SNUG 2016 14 

 

ÅMode-of-operation 

ï Selected once or a few times during simulation 

ï Often only at the beginning of simulation 

ï Affects coverage context 

 

ÅConfiguration 

ï Selected via `defines throughout the RTL 

ï Affects structure of covergroup 

Customer 2:  

Did you even test this mode? 

IP 

X 

Y 

Speeds 

Low power 

= 1 cross Gen3 && x1 && é 

cross Gen3 && x2 && é 

cross Gen3 && x4 && é 



SNUG 2016 15 

Goals 

ÅWrite covergroups once 

 

ÅAutomatically shape all covergroups by configuration 

 

ÅAutomatically propagate mode coverpoints to covergroups 

 

ÅAvoid waivers at (nearly) all costs 

When cross c_0 is covered, 

the whole group is covered 



SNUG 2016 16 

Table Format 

Coverpoints Data Ctrl 

c_0 
8ôhFB, 8ôh5C 

8ôhFD, 8ôhFE  
1ôb1 

coverpoint data { 

  bins data_0[ ] = {  

    8ôhFB, 8ôh5C, 8ôhFD, 8ôhFE };  

} 

coverpoint ctrl { bins ctrl_0 = { 1ôb1 }; } 

cross data, ctrl {  

  binsof(data.data_0) &&  

  binsof(ctrl.ctrl_0);  

} 



SNUG 2016 17 

Table Format 

Coverpoints Data Ctrl 

c_0 
8ôhFB, 8ôh5C 

8ôhFD, 8ôhFE  
1 

Y = x1 

Coverpoints Data Ctrl M_Speed M_Width 

c_0 
8ôhFB, 8ôh5C 

8ôhFD, 8ôhFE  
1 G1, G2 x1 

Coverpoints Data Ctrl M_Speed M_Width 

c_0 
8ôhFB, 8ôh5C 

8ôhFD, 8ôhFE  
1 G1, G2 x1, x2, x4 

ÅWrite covergroup once 

 

ÅAutomatic mode propagation 

 

ÅShape based on configuration 

Z = G1, G2 

How to setup mode propagation? 

How filter based on configuration? 



SNUG 2016 18 

Hierarchical Abstract Model 

ÅCover block 

ï Collection of related cover groups and cover blocks 

ÅBlock model 

ï Sub-tree from any block 

ÅCover model  

ï Sub-tree from the root block 

 

 

Root block 

cg cg cg 

block_1 block_2 block_3 

block_2_1 block_2_2 block_1_1 

block_1_1_1 



SNUG 2016 19 

Hierarchical Abstract Model 

ÅCover block 

ï Collection of related cover groups and cover blocks 

ÅBlock model 

ï Sub-tree from any block 

ÅCover model  

ï Sub-tree from the root block 

 

ÅCover block ï Excel Spreadsheet 

ÅCover model ï Directory structure 

 

Root block 

cg cg cg 

block_1 block_2 block_3 

block_2_1 block_2_2 block_1_1 

block_1_1_1 



SNUG 2016 20 

Cover Variables 

ÅCover 

ï encourage reuse 

 

ÅMode 

ï special case cover variable automatically 

propagated to all covergroups in the 

current coverblock and child coverblocks 

 

ÅConfig 

ï special case cover variable used to filter 

mode variable values AND  

cover group scenarios 

Root block 

cg cg cg 

block_1 block_2 block_3 

block_2_1 block_2_2 block_1_1 

block_1_1_1 



SNUG 2016 21 

Cover variables in block_1 

ÅCover variables may be re-used: 

ï In current spreadsheet 

ï In any child blockôs spreadsheet 

Name Range 

Data 8ôhFB, 8ôh5C, 8ôhFD, 8ôhFE  

Ctrl 1 

Coverpoints Data Ctrl 

c_0 * 1 

Cover 

Group 

root/block_1/Cover.xlsx 



SNUG 2016 22 

Config and Mode variables in Root 

ÅMode variables are propagated to: 

ï Current spreadsheet cover groups 

ï All child blocksô spreadsheet cover groups 

Name Range 

C_Speed G1, G2, G3 

C_Width x1, x2, x4 

Config 

Mode 

Name Range 

M_Speed G1, G2, G3 

M_Width x1, x2, x4 

root/Cover.xlsx 



SNUG 2016 23 

Specific configuration 

ÅConfig variables filter: 

ï All mode variables 

ï Any cover group scenario that specifies it 

Supported speeds: G1, G2; Support width: x1 

Name Range 

C_Speed G1, G2, G3 

C_Width x1, x2, x4 

Config 

Mode 

Name Range 

M_Speed G1, G2, G3 

M_Width x1, x2, x4 

root/Cover.xlsx 



SNUG 2016 24 

Specific configuration 

ÅConfig variables filter: 

ï All mode variables 

ï Any cover group scenario that specifies it 

Supported speeds: G1, G2; Support width: x1 

Name Range 

C_Speed G1, G2 

C_Width x1 

Config 

Mode 

Name Range 

M_Speed G1, G2, G3 

M_Width x1, x2, x4 

root/Cover.xlsx 



SNUG 2016 25 

Specific configuration 

ÅConfig variables filter: 

ï All mode variables 

ï Any cover group scenario that specifies it 

Supported speeds: G1, G2; Support width: x1 

Name Range 

C_Speed G1, G2 

C_Width x1 

Config 

Mode 

Name Range 

M_Speed G1, G2 

M_Width x1 

root/Cover.xlsx 

Assumed named value 

(i.e. enumeration) 



SNUG 2016 26 

Cover variables in block_1 

ÅConfig variables filter: 

ï Any cover group scenario that specifies it 

Coverpoints Data Ctrl C_Speed 

c_0 * 1 G1, G2 

Group 

root/block_1/Cover.xlsx 

Name Range 

C_Speed G3 

C_Width x1 

Config 

root/Cover.xlsx 

Not applicable 

Removed 



SNUG 2016 27 

Usage model 

Root block 

cg cg cg 

block_1 block_2 block_3 

block_2_1 block_2_2 block_1_1 

block_1_1_1 

Cover model 

cover.xlsx 

Refine 

coverc.pl 



SNUG 2016 28 

Usage model 

Root block 

cg cg cg 

block_1 block_2 block_3 

block_2_1 block_2_2 block_1_1 

block_1_1_1 

Cover model 

cover.xlsx 

covergroup.sv 

Instantiate 

in test bench 

coverc.pl 



SNUG 2016 29 

Usage model 

Root block 

cg cg cg 

block_1 block_2 block_3 

block_2_1 block_2_2 block_1_1 

block_1_1_1 

Cover model 

cover.xlsx 

VPLAN.xml 

covergroup.sv 

Report 

Coverage 

coverc.pl 



SNUG 2016 30 

Usage model 

Root block 

cg cg cg 

block_1 block_2 block_3 

block_2_1 block_2_2 block_1_1 

block_1_1_1 

Cover model 

cover.xlsx 

VPLAN.xml 

covergroup.sv 

coverc.pl 



SNUG 2016 31 

Agenda 

Background 

Our Approach 

ñThe Demoò or ñWhat this looks like without actually running a demoò 

 Coversheet examples from the paper 

 

 



SNUG 2016 32 

Root Cover Model Directory 

Contains the coversheets from the paper 

IP1 static configuration 

Script to build cover model for IP1 

Itôs PERL, it can be run on Windows, too! 



SNUG 2016 33 

Root Cover Block 

Root block coversheet 



SNUG 2016 34 

Root Block::Config Tab 

Åconfig tab ï lists configuration variables 

ÅIdentifies static (compile-time) configuration values for the DUT 



SNUG 2016 35 

Root Block::Mode Tab 

Åmode tab ï lists mode variables 

ÅMode variable range values are pass-thru filtered by config variables 



SNUG 2016 36 

Root Block::Variable Tab 

 

Åvariable ï declare ranges for use in cover points 

ÅVariables may be used in this coversheet and any child coversheet 



SNUG 2016 37 

Root Block::Group Tab 

 

Ågroup ï instantiate variables in cross-scenarios used in a covergroup 

ÅAny mode, config, or cover variable in this or any parent coversheet 



SNUG 2016 38 

IP #1 Configuration Override 

Scope and 

name match? 

Replace range 


